Independence Complexes and Edge Covering Complexes via Alexander Duality
نویسنده
چکیده
The combinatorial Alexander dual of the independence complex Ind(G) and that of the edge covering complex EC(G) are shown to have isomorphic homology groups for each non-null graph G. This yields isomorphisms of homology groups of Ind(G) and EC(G) with homology dimensions being appropriately shifted and restricted. The results exhibits the complementary nature of homology groups of Ind(G) and EC(G) which had been proved by Ehrenborg-Hetyei [10], Engström [11], and Marietti-Testa [16] for forests at homotopy level.
منابع مشابه
Subdivision Yields Alexander Duality on Independence Complexes
We study how the homotopy type of the independence complex of a graph changes if we subdivide edges. We show that the independence complex becomes the Alexander dual if we place one new vertex on each edge of a graph. If we place two new vertices on each edge then the independence complex is the wedge of two spheres. Placing three new vertices on an edge yields the suspension of the independenc...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملNew methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کاملRIGID DUALIZING COMPLEXES
Let $X$ be a sufficiently nice scheme. We survey some recent progress on dualizing complexes. It turns out that a complex in $kinj X$ is dualizing if and only if tensor product with it induces an equivalence of categories from Murfet's new category $kmpr X$ to the category $kinj X$. In these terms, it becomes interesting to wonder how to glue such equivalences.
متن کاملAlexander Duality for Monomial Ideals and Their Resolutions
Alexander duality has, in the past, made its way into commutative algebra through Stanley-Reisner rings of simplicial complexes. This has the disadvantage that one is limited to squarefree monomial ideals. The notion of Alexander duality is generalized here to arbitrary monomial ideals. It is shown how this duality is naturally expressed by Bass numbers, in their relations to the Betti numbers ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 18 شماره
صفحات -
تاریخ انتشار 2011